
# Today's Presentation

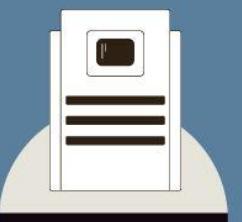
- Lighting design and standards
- Steps to evaluate and consider a control system
- Stakeholder engagement and needs assessment
- Specifications, procurement strategies
- Metering
- Maintenance and operations
- Communication protocols and topology options.



**1807**

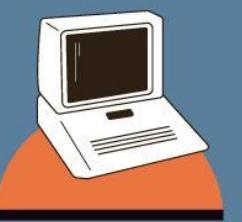
Street lighting




**1876**

Telephones




**1878**

Electric light



**1936**

Televisions



**1976**

Personal computers



**1986**

Mobile phones



**1991**

World wide web



**1994**

PC gaming



**1997**

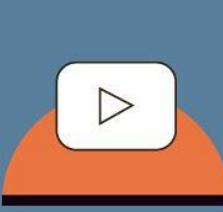
Bloomingdale's



**1998**

Google




**2001**

iPods



**2004**

Facebook



**2005**

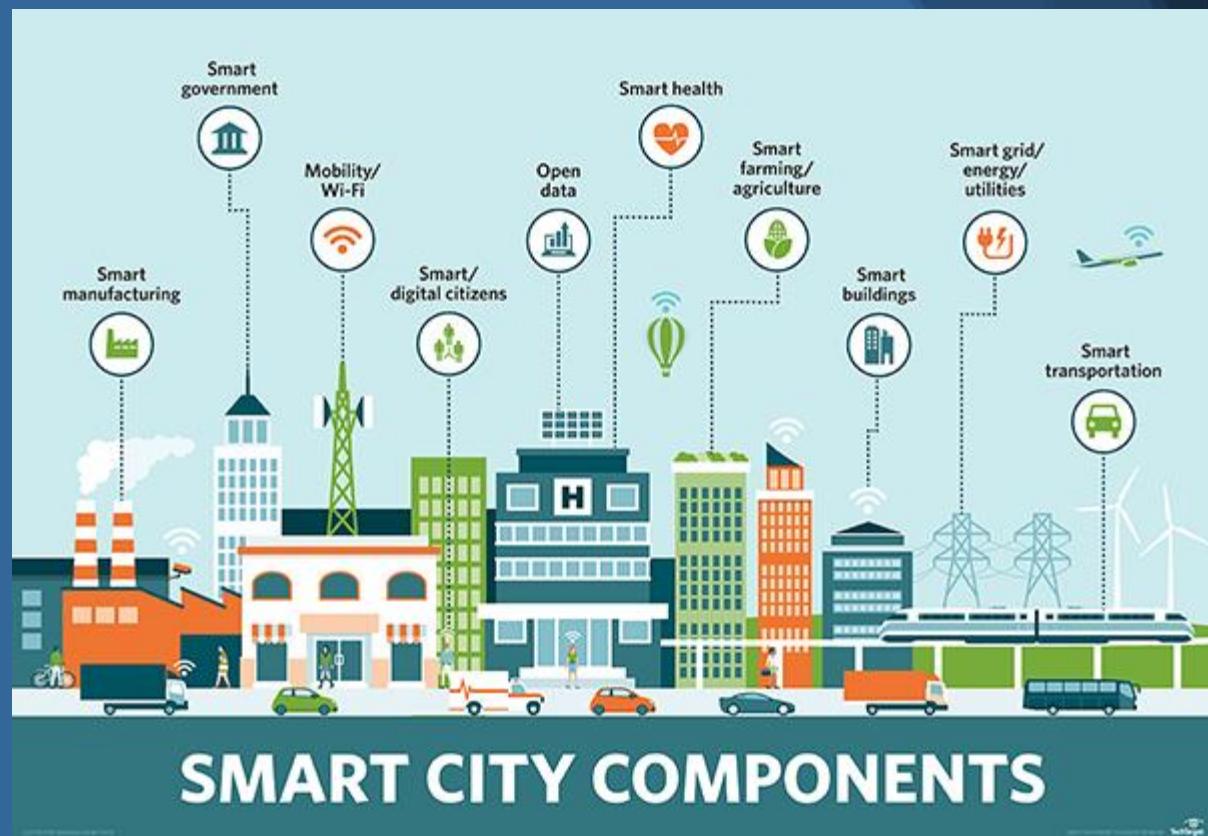
YouTube



**2007**

iPhones

# The World Today


- Technology – Information (Data) – Globalization
- Change is rapid (exponential)
- Technology has changed industries –  
*Photography Kodak vs Fujifilm*
- *We live in a “FAST FUTURE”*
- Are you prepared???

# Be Aware Of

- I am not a network expert.
- Street lighting is my expertise.
- Lighting controls have been developed and standards have not kept pace (SALC Conference)
- Technology Looking for Applications
- Networks and systems require ongoing support

# Streetlights Meet IT World

- Smart Grid, Smart Cities, Smart Metering, Smart Street Lighting...
- Everything is getting smart??
- Is it real??
- Lighting meets IT world





# Why Street Lights

Street lights are everywhere.  
They make a great home for  
network devices.

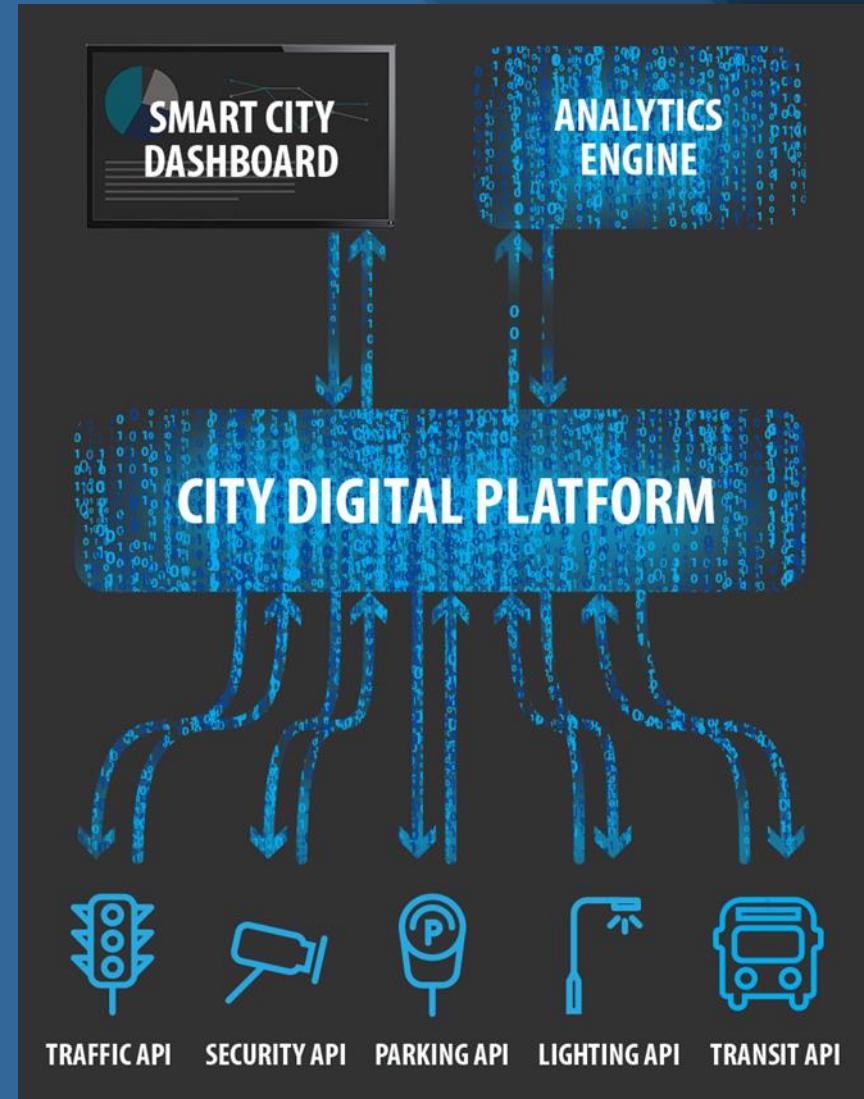
## Transition to Controls

With move to LED, many cities  
are implementing controls



# Smart City

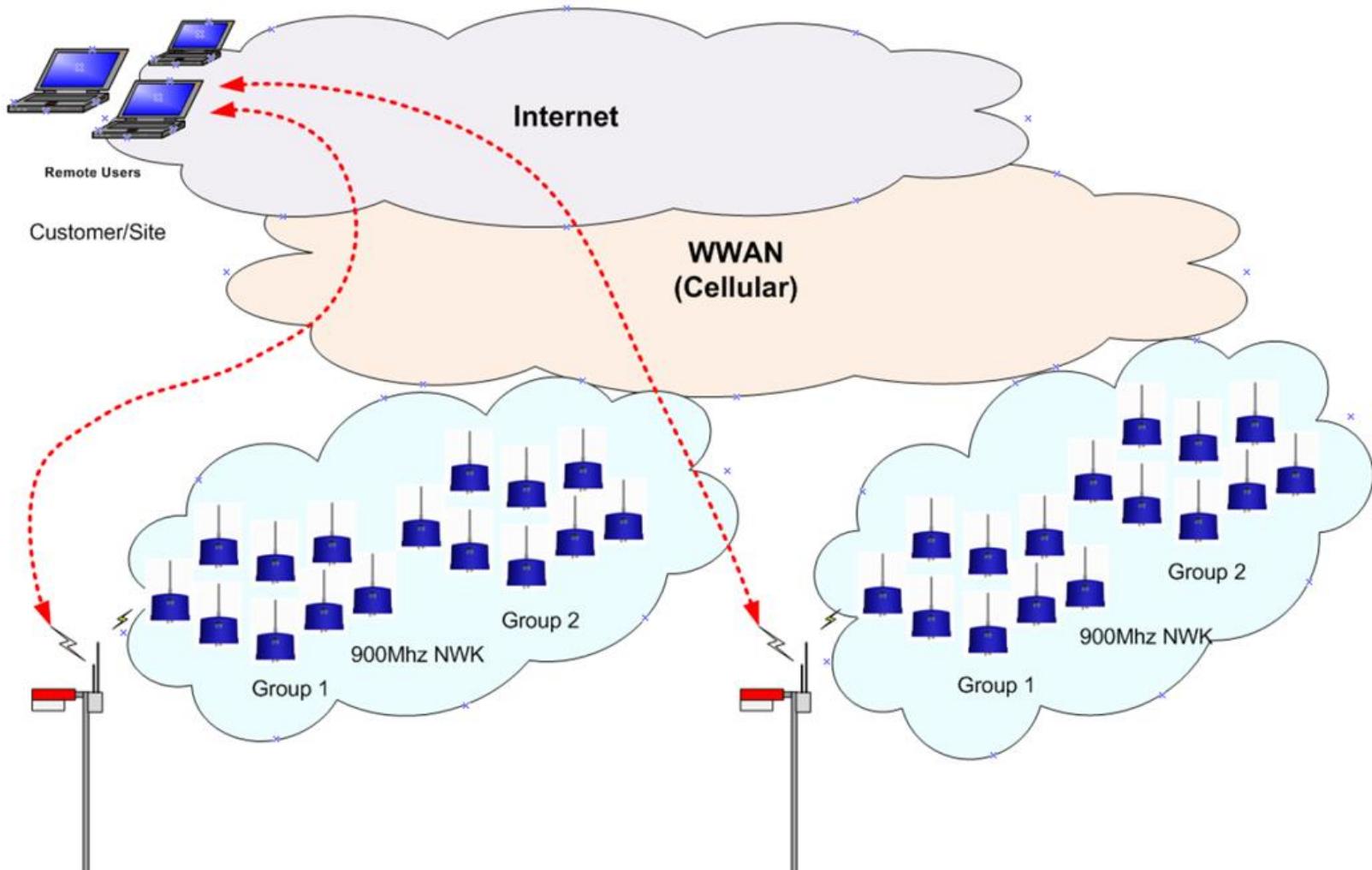
- Integrate multiple Information Communication Technologies and Internet of things solutions
- Goal/benefit to improve quality of life by using urban informatics and technology to improve the efficiency of services
- Why multiple communication technologies? There is no single network that can cover all applications.




# City Digital Platform

Integrate multiple Information Communication Technologies and Internet of things solutions in a secure fashion to manage a city's assets.

## The City Digital Platform


- High level city dashboard view for data from variety of applications
- Enables customers to collect and analyze data
- Create new programs to effect change



# Adaptive Lighting (Smart Street Lighting)

**The ability to vary lighting levels to suit *activity levels* (the environment)**

- Becoming accepted practice in many published documents however research is lacking
- Standards have not keep pace with technology
- To date it is a *Technology Looking for Applications*



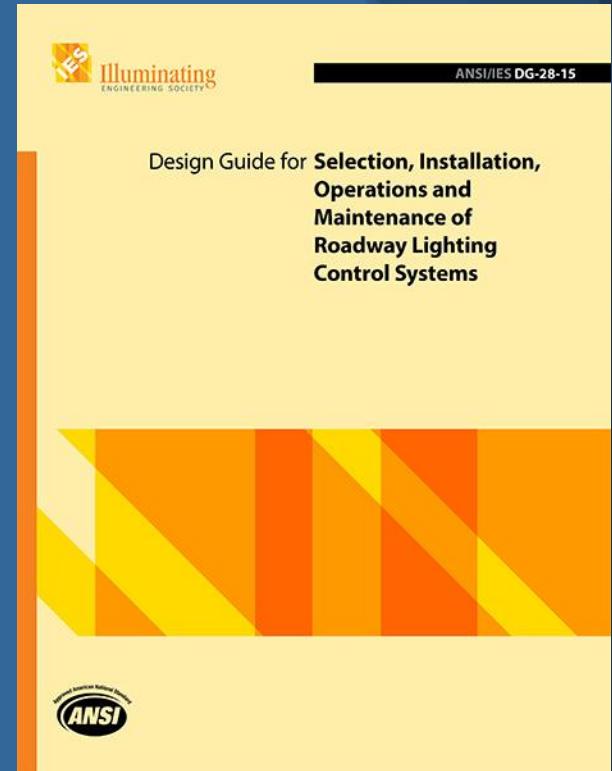
# Adaptive Lighting Example



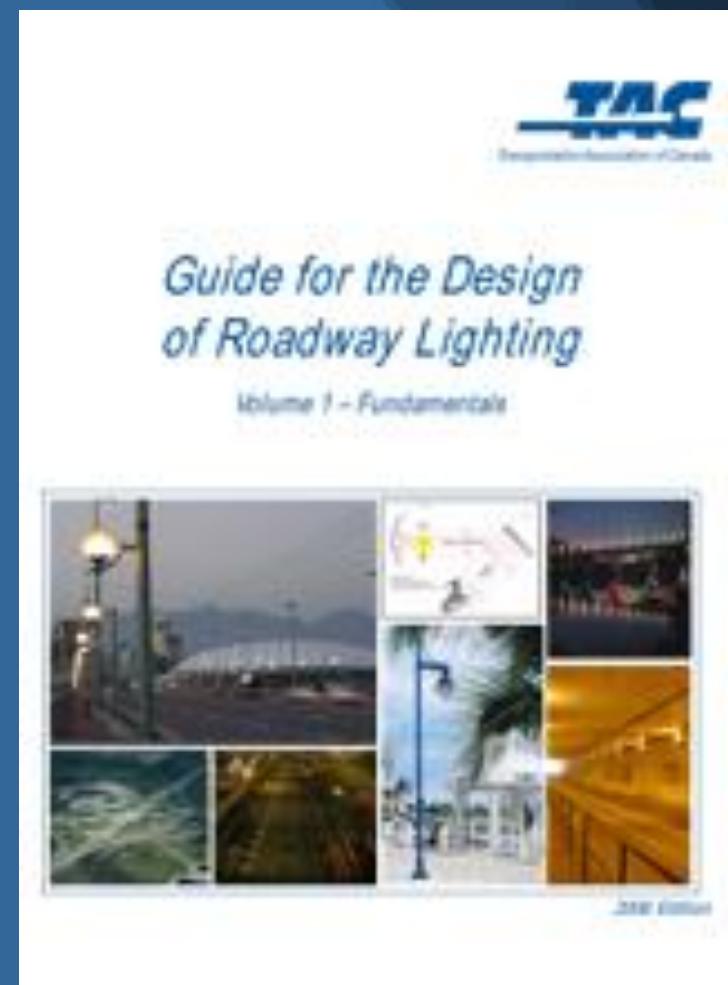
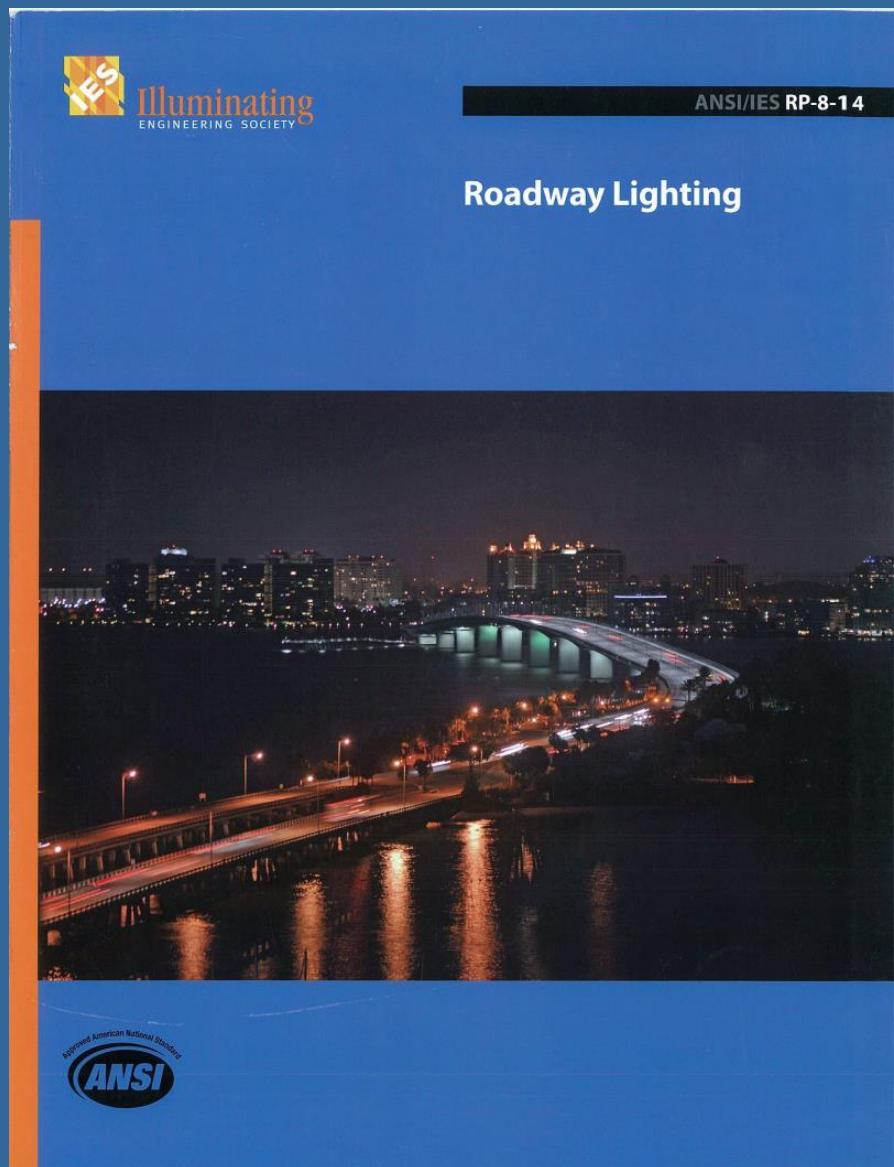
| Applications |                                                  | Benefits                                                        |
|--------------|--------------------------------------------------|-----------------------------------------------------------------|
| 1            | Reduce Lighting Output to Maintained Levels      | Energy Savings (5-10%) - Light Pollution Reduction              |
| 2            | Dimming Areas Over Lighted to Meet Uniformity    | Possible Energy Savings (5-30%) - Light Pollution Reduction     |
| 3            | Match Light Output to Pedestrian Activity Levels | Significant Energy Savings (20-30%) - Light Pollution Reduction |

# Design Considerations - Adaptive Controls

- Reduced Energy Consumption – BC Hydro Studies show 20% to 30% on average for most Cities while still meeting required light levels.
- Obtrusive Light Reduction – Less light off site while people are sleeping
- Power Consumption Monitoring – Can be used to validate costs
- Streamlined Asset Management – Benefits maintenance


# Adaptive Lighting (Smart Street Lighting) - History

- Early pilot in Prince George in 2003-04.
- Pilots undertaken by NRCan for 20 Cities – 2010-11
- Large deployments undertaken with the adoption of LED's
- DMD have operated a test system for the last 8 – 10 years


# References

- TAC – Light Level Reduction and Energy Efficiency Guide
- NHCRP 05-22 Guidelines for Solid-State Roadway Lighting
- US Department of Energy - DOE Municipal Solid-State Street Lighting Consortium
- FHWA Studies
- IESNA – DG-28 and TM-23 Protocols



# Roadway Levels



[www.dmdeng.com](http://www.dmdeng.com)

**DMD**

# Roadway Levels

Table 2. Lighting Design Criteria for Roadways

| ROAD CLASSIFICATION | AVG. LUMINANCE $L_{avg}$ (cd/m <sup>2</sup> ) | AVG. UNIFORMITY RATIO $L_{avg}/L_{min}$ | MAX. UNIFORMITY RATIO $L_{max}/L_{min}$ | MAX. VEILING LUMINANCE RATIO $LV_{max}/L_{avg}$ |
|---------------------|-----------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------|
| FREEWAY CLASS A     | 0.6                                           | 3.5                                     | 6.0                                     | 0.3                                             |
| FREEWAY CLASS B     | 0.4                                           | 3.5                                     | 6.0                                     | 0.3                                             |
| EXPRESSWAY          | 1.0                                           | 3.0                                     | 5.0                                     | 0.3                                             |

Table 3. Lighting Design Criteria for Streets

| STREET CLASSIFICATION | PEDESTRIAN AREA CLASSIFICATION | AVG. LUMINANCE $L_{avg}$ (cd/m <sup>2</sup> ) | AVG. UNIFORMITY RATIO $L_{avg}/L_{min}$ | MAX. UNIFORMITY RATIO $L_{max}/L_{min}$ | MAX. VEILING LUMINANCE RATIO $LV_{max}/L_{avg}$ |
|-----------------------|--------------------------------|-----------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------|
| MAJOR                 | HIGH                           | 1.2                                           | 3.0                                     | 5.0                                     | 0.3                                             |
|                       | MEDIUM                         | 0.9                                           | 3.0                                     | 5.0                                     | 0.3                                             |
|                       | LOW                            | 0.6                                           | 3.5                                     | 6.0                                     | 0.3                                             |
| COLLECTOR             | HIGH                           | 0.8                                           | 3.0                                     | 5.0                                     | 0.4                                             |
|                       | MEDIUM                         | 0.6                                           | 3.5                                     | 6.0                                     | 0.4                                             |
|                       | LOW                            | 0.4                                           | 4.0                                     | 8.0                                     | 0.4                                             |
| LOCAL                 | HIGH                           | 0.6                                           | 6.0                                     | 10.0                                    | 0.4                                             |
|                       | MEDIUM                         | 0.5                                           | 6.0                                     | 10.0                                    | 0.4                                             |
|                       | LOW                            | 0.3                                           | 6.0                                     | 10.0                                    | 0.4                                             |

# Design Criteria for Adaptive Roadway Lighting

PUBLICATION NO. FHWA-HRT-14-051

JULY 2014



U.S. Department of Transportation  
**Federal Highway Administration**

Research, Development, and Technology  
Turner-Fairbank Highway Research Center  
6300 Georgetown Pike  
McLean, VA 22101-2296

[www.dmdeng.com](http://www.dmdeng.com)



## DESIGN CRITERIA FOR STREETS (S-CLASS)

Base Value for Class: 6

Table 23. Street design level selection criteria.

| Parameter                        | Options          | Criteria                    | Weighting Value |
|----------------------------------|------------------|-----------------------------|-----------------|
| Speed                            | High             | > 45 mi/h (70 km/h)         | 1               |
|                                  | Moderate         | 35–45 mi/h (55–70 km/h)     | 0.5             |
|                                  | Low              | < 35 mi/h (55 km/h)         | 0               |
| Traffic Volume                   | High             | > 15,000 ADT                | 1               |
|                                  | Moderate         | 5,000–15,000 ADT            | 0               |
|                                  | Low              | < 5,000 ADT                 | -1              |
| Median                           | No               | No median                   | 1               |
|                                  | Yes (or one-way) | Must be glare blocking      | 0               |
| Intersection/Interchange Density | High             | > 5 per 1 mi (1.6 km)       | 1               |
|                                  | Moderate         | 1–5 per 1 mi (1.6 km)       | 0               |
|                                  | Low              | < 1 per 1 mi (1.6 km)       | -1              |
| Ambient Luminance                | High             | LZ3 and LZ4                 | 1               |
|                                  | Moderate         | LZ2                         | 0               |
|                                  | Low              | LZ1                         | -1              |
| Guidance                         | Good             | > 100 mcd/m <sup>2</sup> lx | 0               |
|                                  | Poor             | < 100 mcd/m <sup>2</sup> lx | 0.5             |
| Pedestrian/Bicycle Interaction   | High             | > 100 pedestrians per h     | 2               |
|                                  | Moderate         | 10–100 pedestrians per h    | 1               |
|                                  | Low              | < 10 pedestrians per h      | 0               |
| Parked Vehicles                  | Yes              | Parked vehicles present     | 1               |
|                                  | No               | No parked vehicles present  | 0               |

Table 24. S-Class lighting design levels.

| Class | Average Luminance (cd/m <sup>2</sup> ) | Max UR (avg/min) | Max UR (max/min) | Veiling Luminance Ratio |
|-------|----------------------------------------|------------------|------------------|-------------------------|
| S1    | 1.2                                    | 3                | 5                | 0.3                     |
| S2    | 0.9                                    | 3.5              | 6                | 0.4                     |
| S3    | 0.6                                    | 4                | 6                | 0.4                     |
| S4    | 0.4                                    | 6                | 8                | 0.4                     |
| S5    | 0.3                                    | 6                | 10               | 0.4                     |

1 cd/m<sup>2</sup> = 0.292 ft-lamberts

## DESIGN CRITERIA FOR ROADWAYS (H-CLASS)

Base Value for Class: 5

Table 21. Roadway design level selection criteria.

| Parameter                        | Options   | Criteria                                       | Weighting Value |
|----------------------------------|-----------|------------------------------------------------|-----------------|
| Speed                            | Very High | > 60 mi/h (100 km/h)                           | 1               |
|                                  | High      | 45–60 mi/h (75–100 km/h)                       | 0.5             |
|                                  | Moderate  | < 45 mi/h (75 km/h)                            | 0               |
| Traffic Volume                   | High      | > 30,000 ADT                                   | 1               |
|                                  | Moderate  | 10,000–30,000 ADT                              | 0               |
|                                  | Low       | < 10,000 ADT                                   | -1              |
| Median                           | No        | No median                                      | 1               |
|                                  | Yes       | Must be glare blocking                         | 0               |
| Intersection/Interchange Density | High      | < 1.5 mi (2.5 km) between intersections        | 1               |
|                                  | Moderate  | 1.5–4 mi (2.5 km–6.5 km) between intersections | 0               |
|                                  | Low       | > 4 mi (6.5 km) between intersections          | -1              |
| Ambient Luminance                | High      | LZ3 and LZ4                                    | 1               |
|                                  | Moderate  | LZ2                                            | 0               |
|                                  | Low       | LZ1                                            | -1              |
| Guidance                         | Good      | > 100 mcd/m <sup>2</sup> lx                    | 0               |
|                                  | Poor      | < 100 mcd/m <sup>2</sup> lx                    | 0.5             |

Table 22. H-class lighting design levels.

| Class | Average Luminance (cd/m <sup>2</sup> ) | Max UR (avg/min) | Max UR (max/min) | Veiling Luminance Ratio |
|-------|----------------------------------------|------------------|------------------|-------------------------|
| H1    | 1                                      | 3                | 5                | 0.3                     |
| H2    | 0.8                                    | 3.5              | 6                | 0.3                     |
| H3    | 0.6                                    | 3.5              | 6                | 0.3                     |
| H4    | 0.4                                    | 3.5              | 6                | 0.3                     |

1 cd/m<sup>2</sup> = 0.292 ft-lamberts

**Table 25. Residential/pedestrian design level selection criteria.**

| Parameter                        | Options      | Criteria                        | Weighting Value |
|----------------------------------|--------------|---------------------------------|-----------------|
| Speed                            | High         | > 45 mi/h (70 km/h)             | 1               |
|                                  | Moderate     | 35–45 mi/h (55–70 km/h)         | 0.5             |
|                                  | Low          | < 35 mi/h (55 km/h)             | 0               |
| Traffic Volume                   | High         | > 7,500 ADT                     | 0.5             |
|                                  | Moderate     | 3,000–7,500 ADT                 | 0               |
|                                  | Low          | < 3,000 ADT                     | -0.5            |
| Intersection/Interchange Density | High         | > 5 per 1 mi (1.6 km)           | 1               |
|                                  | Moderate     | 1–5 per 1 mi (1.6 km)           | 0               |
|                                  | Low          | < 1 per 1 mi (1.6 km)           | -1              |
| Ambient Luminance                | High         | LZ3 and LZ4                     | 1               |
|                                  | Moderate     | LZ2                             | 0               |
|                                  | Low          | LZ1                             | -1              |
| Pedestrian/Bicycle Interaction   | High         | > 100 pedestrians per h         | 1               |
|                                  | Moderate     | 10–100 pedestrian per h         | .5              |
|                                  | Low          | < 10 pedestrians per h          | 0               |
| Parked Vehicles                  | Yes          | Parked vehicles present         | .5              |
|                                  | No           | No parked vehicles present      | 0               |
| Facial Recognition               | Required     | Facial recognition required     | 1               |
|                                  | Not Required | Facial recognition not required | 0               |

**Table 26: P-class lighting design levels.**

| Class | E Average (Lux) | E Vertical (minimum point) | Ratio $E_{avg}/E_{min}$ |
|-------|-----------------|----------------------------|-------------------------|
| P1    | 10              | 5                          | 4                       |
| P2    | 5               | 2                          | 4                       |
| P3    | 4               | 1                          | 4                       |
| P4    | 3               | 0.8                        | 6                       |
| P5    | 2               | 0.6                        | 10                      |

# Design Considerations

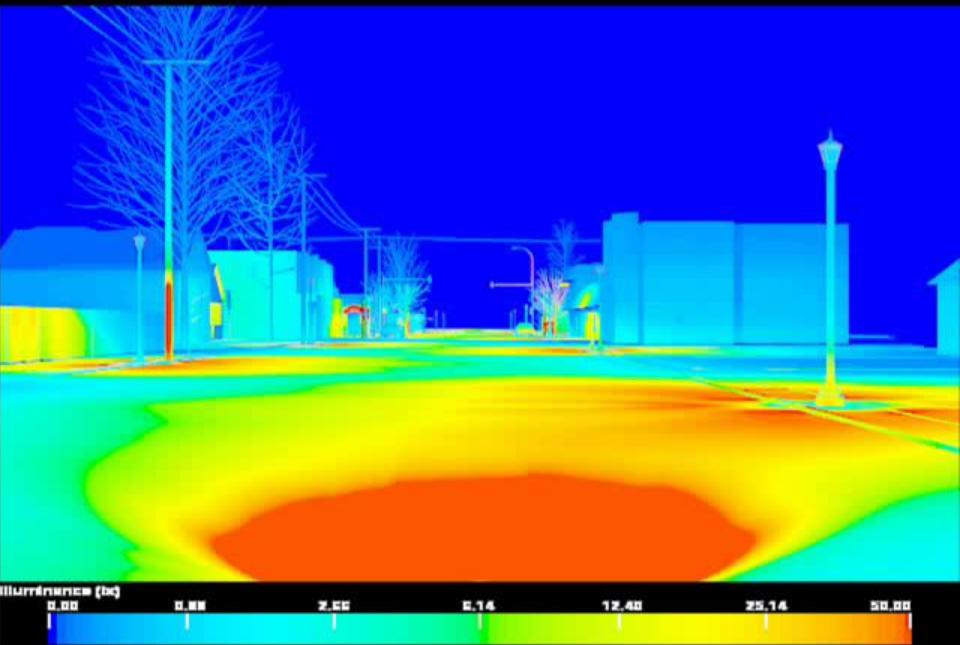
**Residential Streets (most are to lowest level 0.3 cd/m<sup>2</sup>) –**

Consider Car headlamps and Driver Safe Stopping Distances and dim in off peak periods (say midnight to 5AM)

These roads comprise a significant inventory in a typical city. Lighting research focused on highways and freeways (FHWA)

Lighting is of value so turning lights off may diminish ones “feeling of security”. Santa Rosa, California.

Consider 30-60% dimming off peak via adaptive system




**Table 1: AASHTO Stopping Sight Distance (Wet Pavement)**

| Traffic Speed km/h (mph) | Downgrade |           |           |            | Upgrade   |           |           |
|--------------------------|-----------|-----------|-----------|------------|-----------|-----------|-----------|
|                          | 0         | 3         | 6         | 9          | 3         | 6         | 9         |
| 35 (20)                  | 35 (115)  | 35 (116)  | 40 (120)  | 40 (126)   | 35 (109)  | 35 (107)  | 35 (104)  |
| 40 (25)                  | 50 (155)  | 50 (158)  | 50 (165)  | 55 (173)   | 45 (147)  | 45 (143)  | 45 (140)  |
| 50 (30)                  | 60 (200)  | 65 (205)  | 65 (215)  | 70 (227)   | 60 (200)  | 60 (184)  | 55 (179)  |
| 60 (35)                  | 80 (250)  | 80 (257)  | 85 (271)  | 90 (287)   | 75 (237)  | 70 (229)  | 70 (222)  |
| 65 (40)                  | 95 (305)  | 95 (315)  | 100 (333) | 110 (354)  | 90 (289)  | 85 (278)  | 80 (269)  |
| 75 (45)                  | 110 (360) | 115 (378) | 120 (400) | 130 (427)  | 105 (344) | 100 (331) | 100 (320) |
| 80 (50)                  | 130 (425) | 135 (446) | 145 (474) | 155 (507)  | 125 (405) | 120 (388) | 115 (375) |
| 90 (55)                  | 150 (495) | 160 (520) | 170 (553) | 180 (593)  | 145 (469) | 140 (450) | 135 (433) |
| 100 (60)                 | 175 (570) | 185 (598) | 195 (638) | 210 (686)  | 165 (538) | 160 (515) | 150 (495) |
| 105 (65)                 | 200 (645) | 210 (682) | 220 (728) | 240 (785)  | 190 (612) | 180 (584) | 170 (561) |
| 115 (70)                 | 225 (730) | 235 (771) | 250 (825) | 275 (891)  | 210 (690) | 200 (658) | 195 (631) |
| 120 (75)                 | 250 (920) | 265 (866) | 285 (927) | 305 (1003) | 235 (772) | 225 (736) | 215 (704) |

**Source:** A Policy on Geometric Design of Streets & Highways, AASHTO, Washington DC, 2004. Chapter 3 Elements of Design.

The speed and distance columns only correspond to their metric or English equivalent, i.e., if determining the SSSD for a posted speed in kilometer per hour (km/h), use the value shown in m, if using miles per hour (mph), use the value shown for ft.



[www.dmdeng.com](http://www.dmdeng.com)



# Freeways and Highways

- One factor which could allow for reduced levels is reduced speed.
- Speed sensors could be used to sense low speeds and adjust and dim light levels during these low speed periods.